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In beginning textbooks, bounded real valued functions with domain R and one point of
discontinuity are usually defined piecewise with each piece being given by a formula.
When I first took calculus, the only functions I was familiar with were those associ-
ated with a formula. It bothered me that when a counterexample with a discontinuity
was called for, the machinery of cases was used, being introduced for the first time
at exactly this point. (See, for example, any of references [1-4].) Even though such
examples are satisfactory from the modern point of view, this paper shows that it is not
very hard to create many examples of functions with a single point of discontinuity
while completely avoiding functions given by means of cases.

Bounded functions with exactly one point of discontinuity can be discontinuous in
six ways. Here we give six examples, each having a different type of discontinuity at
its unique point of discontinuity. Each example type will be represented as a pointwise
limit of quite simple continuous functions. The approximating functions will be given
by elementary formulas not requiring piecewise presentation. Furthermore, these func-
tions will all have compact support. A function has compact support if the set of points
where it is non-zero is contained in some finite interval.

We avoid cases, but the price paid for this is that we require the concept of a point-
wise convergent sequence. Thus this article is appropriate for an undergraduate in-
troductory analysis course, but may be too hard for most beginning calculus courses.
Functions of compact support are usually encountered only in more advanced analysis
courses where they are often built from C* pieces and used for localizing functions,
for example for creating a partition of unity. So it may come as a surprise to some that
there exist any compactly supported function expressible as a simple formula.

Here are three examples of real valued functions of a real variable that are discon-
tinuous at x = 0. All three are defined piecewise, that is to say, by cases.

1 ifx >0
sgn (x) = 0 ifx=20
—1 ifx <0

1 itx=o0
X=10  ifx£0
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1
sin — ifx #0
s(x) = X .
0 ifx =0

These three functions, together with simple combinations of them, give a fairly com-
plete picture of the six ways a bounded function can be discontinuous at a point. The
grid in Figure 1 shows the six ways a single point discontinuity can occur. Each ex-
ample has a formula depending only on sgn (x), x (x), and s (x).
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(a) Jump with left limit, right limits, (b) Limits from both sides do not ex-
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side: sgn(z) + x(x) +x (%)

Figure 1. The 6 types of discontinuities.

We see from these six examples that every possible type of discontinuity can be ex-
pressed in terms of three functions, sgn (x), x (x), and s (x). This paper demonstrates
that sgn (x), x (x), and a third function S (x) may be written as limits of sequences of
continuous functions. The function § (x) will be defined later in this paper and will be
used in place of s (x) since it will share with s (x) the property of having neither one
sided limit at x = 0, but the elements of its approximating sequence will be simpler
than trigonometric. All of the functions in the three approximating sequences have
elementary formulas defined for all real numbers.
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sgn (x) and x (x) as limits of sequences

Let
u(x):|x|+1. (1)
Then
sgn (x) = nli)rglo u(nx). 2)
Write |x| as +/x2, to see that there are no hidden piecewise defined objects here.
Let
v(x) = ! . 3)
x| +1
Then
x (x) = lim v (nx). “)

Graph u (100x) and v (100x) to get some intuition about these two examples. For-
mally, whenever we write

f () = lim f, (),

we mean that f is the pointwise limit of the sequence of functions { f,},-,, i.e., that
whenever any real number x is fixed, the resulting sequence of numbers { f,, (x)} tends
to the limiting number f (x) as n tends to infinity.

For each positive integer n, both the functions u (nx) and v (nx) are continuous and
expressed as elementary formulas with domain R.

Unfortunately, they do not have compact support. The next section creates a tool
that will allow us to deal with this issue.

Bumps

We will build S (x), our simpler version of s (x), by adding together a set of bumps.
A bump will be a very simple function having compact support. Recall that a function
has compact support if the set of points where it is non-zero is contained in some finite
interval.

Let p (x) =xT = (|Jx| +x) /2and n (x) = x~ = (|x| — x) /2. The graphs of p and
n are shown in Figure 2.

The product p (x — a) n (x — b) is positive on the interval (a, b) and is zero on the
complement of (a, b). On (a, b) it agrees with the quadratic (x — a) (b — x) which
achieves a maximum value of (’%)2 at the midpoint x = # We normalize to create
a non-negative function of maximum height 1. Our bumps are the family of functions,
one for each pair of real numbers a, b with a < b, given by

2 2
Buy (x) = (b—> px—ayn(x—b)
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(a) The graph of p(z) (b) The graph of n(z)
Figure 2. The graphs of p and n.
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Figure 3. The simple bump graph B_; 1 (x).

So B, can be expressed as the formula

1 2
B, (x) = <m> (Ix —al+ (x —a) (Ix = bl = (x = D)). (&)

For another, more geometrically based formula: Recall that for x in the interval
[a, b], B, (x) is the quadratic passing through the endpoints and having maximum
value 1 at the center m = (b + a) /2, so if we set § = (b — a) /2 to the half-length of
the interval, we get the alternative formula

Buy (x) = (1 - (x ;’")2)+ (©)
(- 5)

The graph of the bump B_; ; (x) is shown in Figure 3.

340 © THE MATHEMATICAL ASSOCIATION OF AMERICA



Forn >2and |x| < /n,1>B_,,(x) > B_,., (ﬁ) =1- % It follows that for
every real number x,

lim B_,, (x) = 1. (7)

n—0o0

Examples as limits of compactly supported functions

Before we use bumps to create the example S (x) mentioned above, we will use them
to easily express both sgn (x) and y (x) as limits of sequences {U, (x)} and {V,, (x)}
of functions which are not only continuous and expressed as elementary formulas with
domain R, but are also compactly supported.

The bump functions allow us to convert any example of a function discontinuous
at a point being a limit of everywhere defined formulas into a similar example where
the approximating functions are also compactly supported. For example, let U, (x) be
u (nx) B_, , (x). Formulas (1) and (6) show that for each integer n, U, (x) can be given
by an everywhere defined, continuous, compactly supported, elementary formula; then
limits (2) and (7) lead to

lim U, (x) = lim u (nx) B_,, (x) = lim u (nx) lim B_, , (x)

n— 00

=sgn(x) -1 =sgn(x).

A very similar argument using (3) and (4) in place of (1) and (2) gets the same result
for the discontinuous function x (x). Another, even faster, way of treating x is to write

X () = lim (B_i; (x))".

In view of the formulas expressing all six types of discontinuous functions in terms
of sgn, x, and s, it suffices to produce a function S (x) that, like s (x), fails to have
either one sided limit at x = 0; but that, unlike s (x), is simply and naturally given
as a limit of continuous functions, each of which is compactly supported and defined
everywhere by an elementary formula.

To this end, fix a positive integer n and define C, (x) = B3 | 5 1 (x —1/2").

) ) 42n°42n
Then the following three properties hold:

: . 31 51
1. C,(x)iszerooutsideof I, = { ——, —— |,
42n 42n
1
2. C, is a quadratic bump of maximum height 1 at the center point x = 7 of I,

and of height 0 at both endpoints of /,,, and

31 51
3. C, is given by the everywhere defined formula (5) with a = i and b = YETR

The sum of the first N bumps,

N
av () =) C,(v),

n=1
is an everywhere defined formula and has the value O at every point of the set
31 51
(—oo, ZZTV) U (ZE oo). The bumps do not overlap, since C,; lies strictly to
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51
the left of C,; in fact, the supremum of the set where C,; # 0 is oI and the

31
infimum of the set where C,, # 0 is i and

51 51 61 31
42ntl - gon T g2n 42n°

Now let

g @)= lim gy (x) =) C,(x).
n=1

1 31
It is easy to see that g )= 1 and that g <Z§) =0forn=1,2,3,.... Thus

lim,_, o+ g (x) does not exist. The graph of g¢ (x) is shown in Figure 4.
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Figure 4. The graph of g5 (x): a sum of bumps.

The function g (x) does satisfy lim,_,o- g (x) = g (0) = 0, since g (x) = 0 for all
non-positive x. For a function with neither left nor right limit at x = 0, use S (x) =
g (x) — g (—x). Note that g (x) itself is also directly an instance of type 4 in our coun-
terexample grid.

Remark. The continuous functions appearing in my three approximating sequences

are all built by starting from x, x2, 1/x, and +/x2 and performing a few simple alge-
braic operations.

Related examples and exercises

A way to create the function s (x) itself without cases is this. First let

S, (x) = sin

1
x|+ —
nim
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As n — 00, at every x this sequence of functions approaches

(1 .
s (lx]) = sin <m> ifx #0 . )
0 iftx=0

Since this function is even, we must multiply by sgn (x) to achieve s (x) itself. The
desired approximating sequence is {sn (x)u (nx) B_, » (x)}; using (8), (2), and (7),
we get

lim s, (x)u (nx) B_,,, (x) =s (|x]) -sgn(x) -1 =5 (x).

The only weakness to this approach is that the approximating functions are trigono-
metric, and thus not very elementary.
Note that the bump function B, ; (x) has corners. If we replace p (x) by

1(| |+ x) x|
5 x|+ x)|x

and then repeat the rest of the construction in a very similar way, the resulting analog of
B, » (x) will have a continuous derivative of order n — 1. I don’t see an equally simple
way to make the analogue of B, ;, (x) be C*. From the point of view of this paper,
the trouble with using P (x) = 3 (Ix| +x) —— and N (x) = 1 (|x| — x) L%in place

X X

of p (x) and n (x) is that they are undeﬁneé when x = 0. However, if W‘é are going
to use the test of being acceptable to 18th century mathematicians, then removable
discontinuities may be removed: thus since lim,_.e~"/** = 0, they would take e~ !/**
to be zero. Under these rules, there does exist a fairly simple formula for a compactly
supported C* bump, namely P (x —a) N (x — b) where a < b.

Here is an easy exercise for the reader: Start from this example and copy the pro-
cedure of this paper to find examples for all six types of discontinuities in our grid,
using pointwise limits of sequences of compactly supported formulas which are better
than ours in being C*, but worse than ours in requiring the non-elementary formula
element e~/

If we relax the restriction that our functions be bounded and extend our study to
include all real valued function with domain R and one point of discontinuity, then
instead of the six types of behavior shown in Figure 1, there are 24 types of possible
behavior at the discontinuity. Types (a) through (f) expand respectively to 3, 7, 2, 3,
2, and 7 distinct types. Two examples: type (a), a jump with left limit, right limit, and
value all distinct, expands to these 3 types: both limits finite, one limit finite but the
other limit = 400, and one limit = +oc and the other limit = —o0; and type (f), no
limit from one side, value distinct from the other sides limit, expands to these 7 types:
(1) one side oscillates finitely and the finite limit on the other side is distinct from the
value, (2) one side oscillates finitely and the limit of the other side is 400, (3) on one
side the limsup is +oco and the liminf is finite and the finite limit on the other side is
distinct from the value, (4) on one side the limsup is +oco and the liminf is finite and
the limit on the other side is +o0, (5) on one side the limsup is +oo and the liminf is
finite and the limit on the other side is —oo, (6) on one side the limsup is +o00 and the
liminf is —oo and the finite limit on the other side is distinct from the value, and (7) on
one side the limsup is +oco and the liminf is —oo and the limit on the other side is +oo.

More exercises: (1) Complete the classification of functions with one point of dis-
continuity. In other words, enumerate the 14 cases not spelled out above. (2) Then
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provide a simple example for each of the 18 types not covered in this paper, first given
by cases, and then given by means of a sequence of continuous, simple, compactly
supported formulas. The second part is pretty tedious, you might only want to do a
few.

Acknowledgments. Fernando Gouvéa of Colby College showed me the bump function
B, (x). My brother, Peter Ash of Cambridge College, told me that he had seen the function

(1 - x2)+ when he worked in computer graphics. This motivated the alternate formula (6)
for the bump B, ;. My colleague, Alan Berele, created {s, (x)} for me. I once wanted to put
a graph of sgn (x) into a research paper using a graphing program that I had not sufficiently
mastered to input piecewise defined functions. A colleague, Stephen Viagi, suggested that I
use % arctan (100x). His suggestion motivated my first sequence {« (nx)} above. This paper
was improved by two College Math. J. referees. My son, Michael Ash, improved the graphics.

Summary. A bounded real valued function with domain R and one point of discontinuity
can be discontinuous in six ways. In beginning textbooks such functions are usually defined
piecewise with each piece being given by a formula. Here we give six examples, each having
a different type of discontinuity at its unique point of discontinuity. Each example type is
represented as a pointwise limit of quite simple continuous functions. Each approximating
function can be given by an elementary formula and also can be chosen to be of compact
support.
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